

Feb 19-8:47 AM

Oct 31-7:28 AM

$$
\bar{x}=24 \quad S=10
$$

By empirical Rule

$$
\begin{aligned}
& \text { 68/. Range } \rightarrow \bar{x} \pm S=24 \pm 10 \rightarrow 14 \text { to } 34 \\
& 95 \% \text { Range } \rightarrow \bar{x} \pm 2 S=24 \pm 2(10) \rightarrow 4 \text { to } 44
\end{aligned}
$$

"usual Range"

$$
99.7 \% \text { Range } \rightarrow \bar{x} \pm 3 S=24 \pm 3(10) \rightarrow-6 \text { To } 54
$$

what is standard deviation?
Sample Standard deviation $\rightarrow S \rightarrow S \geq 0$

$$
S=\int_{\text {variance }}^{\sqrt{s^{2}}} \quad S^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \quad \text { or } \quad S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}
$$

Standard deviation is a number that indicates the spread of data elements from the mean.
If S is Small \rightarrow Data elements are close to \bar{x}.

If S is big \rightarrow Data elements are more spread out from \bar{x}.
If $S=0 \rightarrow$ All data elements are identical and equal to \bar{x}.

Oct 31-7:38 AM

$$
\begin{aligned}
& \text { Consider the Sample below } \\
& =\begin{array}{l}
2,3,3,3,4 \\
\sum x=15
\end{array} \quad \sum x^{2}=47 \\
& \bar{x}=\frac{\sum x}{n}=\frac{15}{5}=3 \\
& s^{2}=\frac{n^{n} \sum x^{2}-(\Sigma x)^{2}}{n(n-1)}=\frac{5.47-15^{2}}{5(5-1)}=\frac{10}{20}=.5 \\
& S=\sqrt{S^{2}}=\sqrt{.5} \approx .707 \quad \begin{array}{l}
\text { Small } S \\
\text { Data elements are }
\end{array} \\
& \text { close to } \bar{x}=3
\end{aligned}
$$

Oct 31-7:51 AM

$$
\begin{aligned}
& \text { Given } n=12, \quad \sum x=72, \quad \sum x^{2}=432 \\
& \bar{x}=\frac{\sum x}{n}=\frac{72}{12}=6 \\
& s^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}=\frac{12 \cdot 432-(72)^{2}}{12(12-1)}=\frac{0}{132}=0 \\
& S=\sqrt{s^{2}}=\sqrt{0}=0 \quad \begin{array}{r}
\text { since } S=0 \\
\Rightarrow \text { All data elements are } \\
\text { identical and equal to } \\
\bar{x}=6 .
\end{array}
\end{aligned}
$$

Clear all lists	
Store the Sample below in L1	
$\begin{array}{lllll}18 & 12 & 10 & 20 & 25\end{array}$	$n=15$
$\begin{array}{lllll}15 & 19 & 24 & 17 & 16\end{array}$	Mode \rightarrow No Mode
$28 \quad 30 \quad 5 \begin{array}{llll} & 32 & 21\end{array}$	use Stat \rightarrow CALC
	[1:1--var stats
68\%. Rarge with L1 to	
$\bar{\chi} \pm S \rightarrow 19 \pm 8 \rightarrow 11$ to $27 \quad \bar{\chi}=19.467 \approx 9$	
95% Range $\quad S=7.511 \approx 8$	
$\bar{x} \pm 2 S \rightarrow 19 \pm 2(8) \rightarrow\left[\begin{array}{ll} 3 & \text { to } 35 \\ S^{2} \end{array}=\frac{5923}{105}\right.$	
	VARS 5: Stuistios 3 : S_{x}
	χ^{2} Matit IS Pract Enk

Oct 31-8:03 AM

Class QE 6
Consider the following
5 - Number Summary

4) Lower fence $=50+1.5(10)=65$

$$
\begin{aligned}
L F & =Q_{1}-1.5(I Q R) \\
& =40-1.5(10)=25
\end{aligned}
$$

\qquad
\qquad

Oct 31-8:21 AM
How to find \bar{x} and S for group data Using TI:

3) class MP $=\frac{\text { class limits }}{2}$ 4) $n=25$
5) Draw histogram Using class MP $\dot{\varepsilon}$. class F

$$
\begin{aligned}
& \text { Consider the chart below } \\
& \text { LI }\left\{\begin{array}{c|c}
\text { class MP } & \text { class } F \\
\hline 20 & 6 \\
\hline 30 & 9 \\
\hline 40 & 10 \\
\hline 50 & 4 \\
\hline 60 & 5
\end{array}\right\} \text { Lb } \\
& \leftrightarrow \\
& \text { a) } \mathrm{cw}=10 \\
& \text { 3) } n=\sum f=6+9+10+4+5=34 \\
& \text { Class MP } \rightarrow 11 \\
& \text { class } F \rightarrow L \text { ? } \\
& \text { Use } 1 \text {-Var stats with (1) } L \text { to find } \\
& \bar{x}=37.941 \\
& \text { Find } s^{2} \text { in reduced fraction } \\
& s=12.975 \\
& n=34 \\
& \text { VARS 5: Statistics } 3: 5 x \text { x } \\
& \text { MATH Fac Enter } S^{2}=\frac{94450}{51} \\
& 561
\end{aligned}
$$

Oct 31-9:05 AM

Oct 31-9:26 AM

